Files
Convention-Python/Convention/Runtime/String.py

313 lines
11 KiB
Python
Raw Normal View History

2025-07-10 15:08:20 +08:00
from .Config import *
2025-07-09 17:39:50 +08:00
def LimitStringLength(data, max_length:int=50) -> str:
2025-07-11 01:36:10 +08:00
s:str = data if isinstance(data, str) else str(data)
2025-07-09 17:39:50 +08:00
if len(s) <= max_length:
return s
else:
inside_str = "\n...\n...\n"
# 计算头尾部分的长度
head_length = max_length // 2
tail_length = max_length - head_length - len(inside_str) # 3 是省略号的长度
# 截取头尾部分并连接
return s[:head_length] + inside_str + s[-tail_length:]
def FillString(data:Any,
max_length: int = 50,
fill_char: str = " ",
side: Literal["left", "right", "center"] = "right"
) -> str:
2025-07-11 01:36:10 +08:00
s:str = data if isinstance(data, str) else str(data)
2025-07-09 17:39:50 +08:00
char = fill_char[0]
if len(s) >= max_length:
return s
else:
if side == "left":
return s + char * (max_length - len(s))
elif side == "right":
return char * (max_length - len(s)) + s
elif side == "center":
left = (max_length - len(s)) // 2
right = max_length - len(s) - left
return char * left + s + char * right
else:
raise ValueError(f"Unsupported side: {side}")
def Bytes2Strings(lines:List[bytes], encoding='utf-8') -> List[str]:
return [line.decode(encoding) for line in lines]
def Bytes2String(lines:List[bytes], encoding='utf-8') -> str:
return "".join(Bytes2Strings(lines, encoding))
def word_segmentation(
2025-07-10 15:08:20 +08:00
sentence,
2025-07-09 17:39:50 +08:00
cut_all: bool = False,
HMM: bool = True,
use_paddle: bool = False
) -> Sequence[Optional[Union[Any, str]]]:
try:
import jieba
2025-07-10 15:08:20 +08:00
return jieba.dt.cut(str(sentence), cut_all=cut_all, HMM=HMM, use_paddle=use_paddle)
2025-07-09 17:39:50 +08:00
except ImportError:
raise ValueError("jieba is not install")
2025-10-23 15:09:29 +08:00
def GetEditorDistanceAndOperations(
s1:str,
s2:str,
) -> Tuple[int, List[Tuple[Literal["add","delete"], int, int, str]]]:
"""
计算两个字符串的编辑距离和操作序列
操作格式: (操作类型, 开始位置, 结束位置, 内容)
位置基于源字符串s1
"""
m, n = len(s1), len(s2)
# 使用简单的LCS算法来找到最长公共子序列
# 然后基于LCS生成操作序列
lcs = [[0] * (n + 1) for _ in range(m + 1)]
# 构建LCS表
for i in range(1, m + 1):
for j in range(1, n + 1):
if s1[i - 1] == s2[j - 1]:
lcs[i][j] = lcs[i - 1][j - 1] + 1
else:
lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1])
# 基于LCS生成操作序列
operations = []
i, j = m, n
while i > 0 or j > 0:
if i > 0 and j > 0 and s1[i - 1] == s2[j - 1]:
# 字符匹配,不需要操作
i -= 1
j -= 1
elif j > 0 and (i == 0 or lcs[i][j - 1] >= lcs[i - 1][j]):
# 需要插入s2[j-1]
# 找到插入位置在s1中的位置
insert_pos = i
operations.insert(0, ("add", insert_pos, insert_pos, s2[j - 1]))
j -= 1
else:
# 需要删除s1[i-1]
operations.insert(0, ("delete", i - 1, i, s1[i - 1]))
i -= 1
# 合并连续的操作
merged_operations = []
for op in operations:
if merged_operations and merged_operations[-1][0] == op[0]:
last_op = merged_operations[-1]
if op[0] == "add" and last_op[2] == op[1]:
# 合并连续的添加操作
merged_operations[-1] = (op[0], last_op[1], op[2], last_op[3] + op[3])
elif op[0] == "delete" and last_op[2] == op[1]:
# 合并连续的删除操作
merged_operations[-1] = (op[0], last_op[1], op[2], last_op[3] + op[3])
else:
merged_operations.append(op)
else:
merged_operations.append(op)
# 计算编辑距离
edit_distance = m + n - 2 * lcs[m][n]
return edit_distance, merged_operations
def _build_line_lcs(lines1: List[str], lines2: List[str]) -> List[List[int]]:
"""
构建行级LCS动态规划表
"""
m, n = len(lines1), len(lines2)
lcs = [[0] * (n + 1) for _ in range(m + 1)]
# 使用哈希加速行比较
hash1 = [hash(line) for line in lines1]
hash2 = [hash(line) for line in lines2]
for i in range(1, m + 1):
for j in range(1, n + 1):
if hash1[i-1] == hash2[j-1] and lines1[i-1] == lines2[j-1]:
lcs[i][j] = lcs[i-1][j-1] + 1
else:
lcs[i][j] = max(lcs[i-1][j], lcs[i][j-1])
return lcs
def _extract_line_operations(lines1: List[str], lines2: List[str], lcs: List[List[int]]) -> List[Tuple[str, int, int, List[str]]]:
"""
从LCS表提取行级操作序列
返回: (操作类型, 起始行号, 结束行号, 行内容列表)
"""
operations = []
m, n = len(lines1), len(lines2)
i, j = m, n
while i > 0 or j > 0:
if i > 0 and j > 0 and lines1[i-1] == lines2[j-1]:
i -= 1
j -= 1
elif j > 0 and (i == 0 or lcs[i][j-1] >= lcs[i-1][j]):
operations.insert(0, ("add", i, i, [lines2[j-1]]))
j -= 1
else:
operations.insert(0, ("delete", i-1, i, [lines1[i-1]]))
i -= 1
# 合并连续的同类行操作
merged = []
for op_type, start, end, lines in operations:
if merged and merged[-1][0] == op_type and merged[-1][2] == start:
merged[-1] = (op_type, merged[-1][1], end, merged[-1][3] + lines)
else:
merged.append((op_type, start, end, lines))
return merged
def _char_diff_in_region(s1: str, s2: str) -> List[Tuple[str, int, int, str]]:
"""
对小范围区域进行字符级LCS比较
返回相对于输入字符串的位置
"""
m, n = len(s1), len(s2)
# 快速路径
if m == 0 and n == 0:
return []
if m == 0:
return [("add", 0, 0, s2)]
if n == 0:
return [("delete", 0, m, s1)]
if s1 == s2:
return []
# 字符级LCS
lcs = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if s1[i-1] == s2[j-1]:
lcs[i][j] = lcs[i-1][j-1] + 1
else:
lcs[i][j] = max(lcs[i-1][j], lcs[i][j-1])
# 回溯生成操作
operations = []
i, j = m, n
while i > 0 or j > 0:
if i > 0 and j > 0 and s1[i-1] == s2[j-1]:
i -= 1
j -= 1
elif j > 0 and (i == 0 or lcs[i][j-1] >= lcs[i-1][j]):
operations.insert(0, ("add", i, i, s2[j-1]))
j -= 1
else:
operations.insert(0, ("delete", i-1, i, s1[i-1]))
i -= 1
# 合并连续操作
merged = []
for op_type, start, end, content in operations:
if merged and merged[-1][0] == op_type:
last_op = merged[-1]
if op_type == "add" and last_op[2] == start:
merged[-1] = (op_type, last_op[1], end, last_op[3] + content)
elif op_type == "delete" and last_op[2] == start:
merged[-1] = (op_type, last_op[1], end, last_op[3] + content)
else:
merged.append((op_type, start, end, content))
else:
merged.append((op_type, start, end, content))
return merged
2025-10-23 15:09:29 +08:00
def GetDiffOperations(
s1:str,
s2:str,
) -> List[Tuple[Literal["add","delete"], int, int, str]]:
"""
计算两个字符串的差异操作序列混合行级+字符级算法
2025-10-23 15:09:29 +08:00
操作格式: (操作类型, 开始位置, 结束位置, 内容)
位置基于源字符串s1的字符偏移
2025-10-23 15:09:29 +08:00
"""
# 快速路径
if s1 == s2:
return []
if not s1:
return [("add", 0, 0, s2)]
if not s2:
return [("delete", 0, len(s1), s1)]
# 阶段1: 分行并建立位置映射
lines1 = s1.split('\n')
lines2 = s2.split('\n')
# 构建行号到字符位置的映射
line_offsets_s1 = [0]
for line in lines1[:-1]:
line_offsets_s1.append(line_offsets_s1[-1] + len(line) + 1) # +1 for '\n'
line_offsets_s2 = [0]
for line in lines2[:-1]:
line_offsets_s2.append(line_offsets_s2[-1] + len(line) + 1)
# 阶段2: 行级LCS分析
lcs = _build_line_lcs(lines1, lines2)
line_operations = _extract_line_operations(lines1, lines2, lcs)
# 阶段3: 转换为字符级操作
final_operations = []
for op_type, start_line, end_line, op_lines in line_operations:
if op_type == "add":
# 添加操作: 在s1的start_line位置插入
char_pos = line_offsets_s1[start_line] if start_line < len(line_offsets_s1) else len(s1)
content = '\n'.join(op_lines)
# 对于添加的行块,可以选择字符级细化或直接使用
# 这里先直接使用行级结果
final_operations.append(("add", char_pos, char_pos, content))
elif op_type == "delete":
# 删除操作: 删除s1的[start_line, end_line)行
char_start = line_offsets_s1[start_line]
if end_line < len(lines1):
char_end = line_offsets_s1[end_line]
else:
char_end = len(s1)
content = '\n'.join(op_lines)
final_operations.append(("delete", char_start, char_end, content))
# 阶段4: 对于连续的删除+添加,尝试字符级精细比较
optimized_operations = []
i = 0
while i < len(final_operations):
if (i + 1 < len(final_operations) and
final_operations[i][0] == "delete" and
final_operations[i+1][0] == "add" and
final_operations[i][2] == final_operations[i+1][1]):
# 这是一个修改操作,进行字符级细化
del_op = final_operations[i]
add_op = final_operations[i+1]
old_text = del_op[3]
new_text = add_op[3]
base_pos = del_op[1]
# 字符级比较
char_ops = _char_diff_in_region(old_text, new_text)
# 调整位置到全局坐标
for op_type, rel_start, rel_end, content in char_ops:
optimized_operations.append((op_type, base_pos + rel_start, base_pos + rel_end, content))
i += 2
else:
optimized_operations.append(final_operations[i])
i += 1
2025-10-23 15:09:29 +08:00
return optimized_operations