Compare commits

...

10 Commits

7 changed files with 1256 additions and 163 deletions

862
Convention/Image/OpenCV.py Normal file
View File

@@ -0,0 +1,862 @@
from ..Runtime.Config import *
try:
import cv2 as cv2
import cv2.data as cv2data
from cv2.typing import *
except ImportError as e:
ImportingThrow(e, "OpenCV", ["opencv-python", "opencv-python-headless"])
try:
import numpy as np
except ImportError as e:
ImportingThrow(e, "OpenCV", ["numpy"])
try:
from PIL import ImageFile as ImageFile
from PIL import Image as Image
except ImportError as e:
ImportingThrow(e, "OpenCV", ["pillow"])
from ..Runtime.File import ToolFile
_Unwrapper2Str = lambda x: str(x)
_Wrapper2File = lambda x: ToolFile(x)
VideoWriter = cv2.VideoWriter
def mp4_with_MPEG4_fourcc() -> int:
return VideoWriter.fourcc(*"mp4v")
def avi_with_Xvid_fourcc() -> int:
return VideoWriter.fourcc(*"XVID")
def avi_with_DivX_fourcc() -> int:
return VideoWriter.fourcc(*"DIVX")
def avi_with_MJPG_fourcc() -> int:
return VideoWriter.fourcc(*"MJPG")
def mp4_or_avi_with_H264_fourcc() -> int:
return VideoWriter.fourcc(*"X264")
def avi_with_H265_fourcc() -> int:
return VideoWriter.fourcc(*"H264")
def wmv_with_WMV1_fourcc() -> int:
return VideoWriter.fourcc(*"WMV1")
def wmv_with_WMV2_fourcc() -> int:
return VideoWriter.fourcc(*"WMV2")
def oggTheora_with_THEO_fourcc() -> int:
return VideoWriter.fourcc(*"THEO")
def flv_with_FLV1_fourcc() -> int:
return VideoWriter.fourcc(*"FLV1")
class VideoWriterInstance(VideoWriter):
def __init__(
self,
file_name: Union[ToolFile, str],
fourcc: int,
fps: float,
frame_size: tuple[int, int],
is_color: bool = True
):
super().__init__(_Unwrapper2Str(file_name), fourcc, fps, frame_size, is_color)
def __del__(self):
self.release()
def wait_key(delay:int):
return cv2.waitKey(delay)
def until_esc():
return wait_key(0)
def is_current_key(key:str, *, wait_delay:int = 1):
return wait_key(wait_delay) & 0xFF == ord(key[0])
class BasicViewable:
def __init__(self, filename_or_index:Union[str, ToolFile, int]):
self._capture: cv2.VideoCapture = None
self.stats: bool = True
self.Retarget(filename_or_index)
def __del__(self):
self.Release()
def __bool__(self):
return self.stats
def IsOpened(self):
return self._capture.isOpened()
def Release(self):
if self._capture is not None:
self._capture.release()
def Retarget(self, filename_or_index:Union[str, ToolFile, int]):
self.Release()
if isinstance(filename_or_index, int):
self._capture = cv2.VideoCapture(filename_or_index)
else:
self._capture = cv2.VideoCapture(_Unwrapper2Str(filename_or_index))
return self
def NextFrame(self) -> MatLike:
self.stats, frame =self._capture.read()
if self.stats:
return frame
else:
return None
def GetCaptrueInfo(self, id:int):
return self._capture.get(id)
def GetPropPosMsec(self):
return self.GetCaptrueInfo(0)
def GetPropPosFrames(self):
return self.GetCaptrueInfo(1)
def GetPropAviRatio(self):
return self.GetCaptrueInfo(2)
def GetPropFrameWidth(self):
return self.GetCaptrueInfo(3)
def GetPropFrameHeight(self):
return self.GetCaptrueInfo(4)
def GetPropFPS(self):
return self.GetCaptrueInfo(5)
def GetPropFourcc(self):
return self.GetCaptrueInfo(6)
def GetPropFrameCount(self):
return self.GetCaptrueInfo(7)
def GetPropFormat(self):
return self.GetCaptrueInfo(8)
def GetPropMode(self):
return self.GetCaptrueInfo(9)
def GetPropBrightness(self):
return self.GetCaptrueInfo(10)
def GetPropContrast(self):
return self.GetCaptrueInfo(11)
def GetPropSaturation(self):
return self.GetCaptrueInfo(12)
def GetPropHue(self):
return self.GetCaptrueInfo(13)
def GetPropGain(self):
return self.GetCaptrueInfo(14)
def GetPropExposure(self):
return self.GetCaptrueInfo(15)
def GetPropConvertRGB(self):
return self.GetCaptrueInfo(16)
def SetupCapture(self, id:int, value):
self._capture.set(id, value)
return self
def SetPropPosMsec(self, value:int):
return self.SetupCapture(0, value)
def SetPropPosFrames(self, value:int):
return self.SetupCapture(1, value)
def SetPropAviRatio(self, value:float):
return self.SetupCapture(2, value)
def SetPropFrameWidth(self, value:int):
return self.SetupCapture(3, value)
def SetPropFrameHeight(self, value:int):
return self.SetupCapture(4, value)
def SetPropFPS(self, value:int):
return self.SetupCapture(5, value)
def SetPropFourcc(self, value):
return self.SetupCapture(6, value)
def SetPropFrameCount(self, value):
return self.SetupCapture(7, value)
def SetPropFormat(self, value):
return self.SetupCapture(8, value)
def SetPropMode(self, value):
return self.SetupCapture(9, value)
def SetPropBrightness(self, value):
return self.SetupCapture(10, value)
def SetPropContrast(self, value):
return self.SetupCapture(11, value)
def SetPropSaturation(self, value):
return self.SetupCapture(12, value)
def SetPropHue(self, value):
return self.SetupCapture(13, value)
def SetPropGain(self, value):
return self.SetupCapture(14, value)
def SetPropExposure(self, value):
return self.SetupCapture(15, value)
def SetPropConvertRGB(self, value:int):
return self.SetupCapture(16, value)
def SetPropRectification(self, value:int):
return self.SetupCapture(17, value)
@property
def FrameSize(self) -> Tuple[float, float]:
return self.GetPropFrameWidth(), self.GetPropFrameHeight()
class BasicCamera(BasicViewable):
def __init__(self, index:int = 0):
self.writer: VideoWriter = None
super().__init__(int(index))
@override
def Release(self):
super().Release()
if self.writer is not None:
self.writer.release()
def CurrentFrame(self):
return self.NextFrame()
def recording(
self,
stop_pr: Callable[[], bool],
writer: VideoWriter,
):
self.writer = writer
while self.IsOpened():
if stop_pr():
break
frame = self.CurrentFrame()
cv2.imshow("__recording__", frame)
writer.write(frame)
cv2.destroyWindow("__recording__")
return self
class ImageObject:
def __init__(
self,
image: Optional[Union[
str,
Self,
BasicCamera,
ToolFile,
MatLike,
np.ndarray,
ImageFile.ImageFile,
Image.Image
]],
flags: int = -1):
self.__image: MatLike = None
self.__camera: BasicCamera = None
self.current: MatLike = None
if isinstance(image, BasicCamera):
self.lock_from_camera(image)
else:
self.load_image(image, flags)
@property
def camera(self) -> BasicCamera:
if self.__camera is None or self.__camera.IsOpened() is False:
return None
else:
return self.__camera
@property
def image(self) -> MatLike:
if self.current is not None:
return self.current
elif self.camera is None:
return self.__image
else:
return self.__camera.CurrentFrame()
@image.setter
def image(self, image: Optional[Union[
str,
Self,
ToolFile,
MatLike,
np.ndarray,
ImageFile.ImageFile,
Image.Image
]]):
self.load_image(image)
def load_from_nparray(
self,
array_: np.ndarray,
code: int = cv2.COLOR_RGB2BGR,
*args, **kwargs
):
self.__image = cv2.cvtColor(array_, code, *args, **kwargs)
return self
def load_from_PIL_image(
self,
image: Image.Image,
code: int = cv2.COLOR_RGB2BGR,
*args, **kwargs
):
self.load_from_nparray(np.array(image), code, *args, **kwargs)
return self
def load_from_PIL_ImageFile(
self,
image: ImageFile.ImageFile,
rect: Optional[Tuple[float, float, float, float]] = None
):
return self.load_from_PIL_image(image.crop(rect))
def load_from_cv2_image(self, image: MatLike):
self.__image = image
return self
def lock_from_camera(self, camera: BasicCamera):
self.__camera = camera
return self
@property
def dimension(self) -> int:
return self.image.ndim
@property
def shape(self) -> Tuple[int, int, int]:
'''height, width, depth'''
return self.image.shape
@property
def height(self) -> int:
return self.shape[0]
@property
def width(self) -> int:
return self.shape[1]
def is_enable(self):
return self.image is not None
def is_invalid(self):
return self.is_enable() is False
def __bool__(self):
return self.is_enable()
def __MatLike__(self):
return self.image
def load_image(
self,
image: Optional[Union[
str,
ToolFile,
Self,
MatLike,
np.ndarray,
ImageFile.ImageFile,
Image.Image
]],
flags: int = -1
):
"""加载图片"""
if image is None:
self.__image = None
return self
elif isinstance(image, type(self)):
self.__image = image.image
elif isinstance(image, MatLike):
self.__image = image
elif isinstance(image, np.ndarray):
self.load_from_nparray(image, flags)
elif isinstance(image, ImageFile.ImageFile):
self.load_from_PIL_ImageFile(image, flags)
elif isinstance(image, Image.Image):
self.load_from_PIL_image(image, flags)
else:
self.__image = cv2.imread(_Unwrapper2Str(image), flags)
return self
def save_image(self, save_path:Union[str, ToolFile], is_path_must_exist = False):
"""保存图片"""
if is_path_must_exist:
_Wrapper2File(save_path).try_create_parent_path()
if self.is_enable():
cv2.imwrite(_Unwrapper2Str(save_path), self.image)
return self
def show_image(
self,
window_name: str = "Image",
delay: Union[int,str] = 0,
image_show_func: Callable[[Self], None] = None,
*args, **kwargs
):
"""显示图片"""
if self.is_invalid():
return self
if self.camera is not None:
while (wait_key(1) & 0xFF != ord(str(delay)[0])) and self.camera is not None:
# dont delete this line, self.image is camera flame now, see<self.current = None>
self.current = self.image
if image_show_func is not None:
image_show_func(self)
if self.current is not None:
cv2.imshow(window_name, self.current)
# dont delete this line, see property<image>
self.current = None
else:
cv2.imshow(window_name, self.image)
cv2.waitKey(delay = int(delay), *args, **kwargs)
if cv2.getWindowProperty(window_name, cv2.WND_PROP_VISIBLE) > 0:
cv2.destroyWindow(window_name)
return self
# 分离通道
def split(self):
"""分离通道"""
return cv2.split(self.image)
def split_to_image_object(self):
"""分离通道"""
return [ImageObject(channel) for channel in self.split()]
@property
def channels(self):
return self.split()
@property
def blue_channel(self):
return self.channels[0]
@property
def green_channel(self):
return self.channels[1]
@property
def red_channel(self):
return self.channels[2]
@property
def alpha_channel(self):
return self.channels[3]
def get_blue_image(self):
return ImageObject(self.blue_channel)
def get_green_image(self):
return ImageObject(self.green_channel)
def get_red_image(self):
return ImageObject(self.red_channel)
def get_alpha_image(self):
return ImageObject(self.alpha_channel)
# 混合通道
def merge_channels_from_list(self, channels:List[MatLike]):
"""合并通道"""
self.image = cv2.merge(channels)
return self
def merge_channels(self, blue:MatLike, green:MatLike, red:MatLike):
"""合并通道"""
return self.merge_channels_from_list([blue, green, red])
def merge_channel_list(self, bgr:List[MatLike]):
"""合并通道"""
return self.merge_channels_from_list(bgr)
# Transform
def get_resize_image(self, width:int, height:int):
if self.is_enable():
return cv2.resize(self.image, (width, height))
return None
def get_rotate_image(self, angle:float):
if self.is_invalid():
return None
(h, w) = self.image.shape[:2]
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, angle, 1.0)
return cv2.warpAffine(self.image, M, (w, h))
def resize_image(self, width:int, height:int):
"""调整图片大小"""
new_image = self.get_resize_image(width, height)
if new_image is not None:
self.image = new_image
return self
def rotate_image(self, angle:float):
"""旋转图片"""
new_image = self.get_rotate_image(angle)
if new_image is not None:
self.image = new_image
return self
# 图片翻折
def flip(self, flip_code:int):
"""翻转图片"""
if self.is_enable():
self.image = cv2.flip(self.image, flip_code)
return self
def horizon_flip(self):
"""水平翻转图片"""
return self.flip(1)
def vertical_flip(self):
"""垂直翻转图片"""
return self.flip(0)
def both_flip(self):
"""双向翻转图片"""
return self.flip(-1)
# 色彩空间猜测
def guess_color_space(self) -> Optional[str]:
"""猜测色彩空间"""
if self.is_invalid():
return None
image = self.image
# 计算每个通道的像素值分布
hist_b = cv2.calcHist([image], [0], None, [256], [0, 256])
hist_g = cv2.calcHist([image], [1], None, [256], [0, 256])
hist_r = cv2.calcHist([image], [2], None, [256], [0, 256])
# 计算每个通道的像素值总和
sum_b = np.sum(hist_b)
sum_g = np.sum(hist_g)
sum_r = np.sum(hist_r)
# 根据像素值总和判断色彩空间
if sum_b > sum_g and sum_b > sum_r:
#print("The image might be in BGR color space.")
return "BGR"
elif sum_g > sum_b and sum_g > sum_r:
#print("The image might be in GRAY color space.")
return "GRAY"
else:
#print("The image might be in RGB color space.")
return "RGB"
# 颜色转化
def get_convert(self, color_convert:int):
"""颜色转化"""
if self.is_invalid():
return None
return cv2.cvtColor(self.image, color_convert)
def convert_to(self, color_convert:int):
"""颜色转化"""
if self.is_invalid():
return None
self.image = self.get_convert(color_convert)
def is_grayscale(self):
return self.dimension == 2
def get_grayscale(self):
if self.is_invalid():
return None
return cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
def convert_to_grayscale(self):
"""将图片转换为灰度图"""
self.image = self.get_grayscale()
return self
def get_convert_flag(
self,
targetColorTypeName:Literal[
"BGR", "RGB", "GRAY", "YCrCb"
]
) -> Optional[int]:
"""获取颜色转化标志"""
flag = self.guess_color_space()
if flag is None:
return None
if targetColorTypeName == "BGR":
if flag == "RGB":
return cv2.COLOR_RGB2BGR
elif flag == "GRAY":
return cv2.COLOR_GRAY2BGR
elif flag == "YCrCb":
return cv2.COLOR_YCrCb2BGR
elif targetColorTypeName == "RGB":
if flag == "BGR":
return cv2.COLOR_BGR2RGB
elif flag == "GRAY":
return cv2.COLOR_GRAY2RGB
elif flag == "YCrCb":
return cv2.COLOR_YCrCb2RGB
elif targetColorTypeName == "GRAY":
if flag == "RGB":
return cv2.COLOR_RGB2GRAY
elif flag == "RGB":
return cv2.COLOR_BGR2GRAY
return None
# 原址裁切
def sub_image(self, x:int, y:int ,width:int ,height:int):
"""裁剪图片"""
if self.is_invalid():
return self
self.image = self.image[y:y+height, x:x+width]
return self
# 直方图
def equalizeHist(self, is_cover = False) -> MatLike:
"""直方图均衡化"""
if self.is_invalid():
return self
result:MatLike = cv2.equalizeHist(self.image)
if is_cover:
self.image = result
return result
def calcHist(
self,
channel: Union[List[int], int],
mask: Optional[MatLike] = None,
hist_size: Sequence[int] = [256],
ranges: Sequence[float] = [0, 256]
) -> MatLike:
"""计算直方图"""
if self.is_invalid():
return None
return cv2.calcHist(
[self.image],
channel if isinstance(channel, list) else [channel],
mask,
hist_size,
ranges)
# 子集操作
def sub_image_with_rect(self, rect:Tuple[float, float, float, float]):
"""裁剪图片"""
if self.is_invalid():
return self
self.image = self.image[rect[1]:rect[1]+rect[3], rect[0]:rect[0]+rect[2]]
return self
def sub_image_with_box(self, box:Tuple[float, float, float, float]):
"""裁剪图片"""
if self.is_invalid():
return self
self.image = self.image[box[1]:box[3], box[0]:box[2]]
return self
def sub_cover_with_rect(self, image:Union[Self, MatLike], rect:Tuple[float, float, float, float]):
"""覆盖图片"""
if self.is_invalid():
raise ValueError("Real Image is none")
if isinstance(image, MatLike):
image = ImageObject(image)
self.image[rect[1]:rect[1]+rect[3], rect[0]:rect[0]+rect[2]] = image.image
return self
def sub_cover_with_box(self, image:Union[Self, MatLike], box:Tuple[float, float, float, float]):
"""覆盖图片"""
if self.is_invalid():
raise ValueError("Real Image is none")
if isinstance(image, MatLike):
image = ImageObject(image)
self.image[box[1]:box[3], box[0]:box[2]] = image.image
return self
def operator_cv(self, func:Callable[[MatLike], Any], *args, **kwargs):
func(self.image, *args, **kwargs)
return self
def stack(self, *args:Self, **kwargs) -> Self:
images = [ image for image in args]
images.append(self)
return ImageObject(np.stack([np.uint8(image.image) for image in images], *args, **kwargs))
def vstack(self, *args:Self) -> Self:
images = [ image for image in args]
images.append(self)
return ImageObject(np.vstack([np.uint8(image.image) for image in images]))
def hstack(self, *args:Self) -> Self:
images = [ image for image in args]
images.append(self)
return ImageObject(np.hstack([np.uint8(image.image) for image in images]))
def merge_with_blending(self, other:Self, weights:Tuple[float, float]):
return ImageObject(cv2.addWeighted(self.image, weights[0], other.image, weights[1], 0))
def add(self, image_or_value:Union[Self, int]):
if isinstance(image_or_value, int):
self.image = cv2.add(self.image, image_or_value)
else:
self.image = cv2.add(self.image, image_or_value.image)
return self
def __add__(self, image_or_value:Union[Self, int]):
return ImageObject(self.image.copy()).add(image_or_value)
def subtract(self, image_or_value:Union[Self, int]):
if isinstance(image_or_value, int):
self.image = cv2.subtract(self.image, image_or_value)
else:
self.image = cv2.subtract(self.image, image_or_value.image)
return self
def __sub__(self, image_or_value:Union[Self, int]):
return ImageObject(self.image.copy()).subtract(image_or_value)
def multiply(self, image_or_value:Union[Self, int]):
if isinstance(image_or_value, int):
self.image = cv2.multiply(self.image, image_or_value)
else:
self.image = cv2.multiply(self.image, image_or_value.image)
return self
def __mul__(self, image_or_value:Union[Self, int]):
return ImageObject(self.image.copy()).multiply(image_or_value)
def divide(self, image_or_value:Union[Self, int]):
if isinstance(image_or_value, int):
self.image = cv2.divide(self.image, image_or_value)
else:
self.image = cv2.divide(self.image, image_or_value.image)
return self
def __truediv__(self, image_or_value:Union[Self, int]):
return ImageObject(self.image.copy()).divide(image_or_value)
def bitwise_and(self, image_or_value:Union[Self, int]):
if isinstance(image_or_value, int):
self.image = cv2.bitwise_and(self.image, image_or_value)
else:
self.image = cv2.bitwise_and(self.image, image_or_value.image)
return self
def bitwise_or(self, image_or_value:Union[Self, int]):
if isinstance(image_or_value, int):
self.image = cv2.bitwise_or(self.image, image_or_value)
else:
self.image = cv2.bitwise_or(self.image, image_or_value.image)
return self
def bitwise_xor(self, image_or_value:Union[Self]):
if isinstance(image_or_value, int):
self.image = cv2.bitwise_xor(self.image, image_or_value)
else:
self.image = cv2.bitwise_xor(self.image, image_or_value.image)
return self
def bitwise_not(self):
self.image = cv2.bitwise_not(self.image)
return self
def __neg__(self):
return ImageObject(self.image.copy()).bitwise_not()
class NoiseImageObject(ImageObject):
def __init__(
self,
height: int,
weight: int,
*,
mean: float = 0,
sigma: float = 25,
dtype = np.uint8
):
super().__init__(NoiseImageObject.get_new_noise(
None, height, weight, mean=mean, sigma=sigma, dtype=dtype
))
@classmethod
def get_new_noise(
raw_image: Optional[MatLike],
height: int,
weight: int,
*,
mean: float = 0,
sigma: float = 25,
dtype = np.uint8
) -> MatLike:
noise = raw_image
if noise is None:
noise = np.zeros((height, weight), dtype=dtype)
cv2.randn(noise, mean, sigma)
return cv2.cvtColor(noise, cv2.COLOR_GRAY2BGR)
def Unwrapper(image:Optional[Union[
str,
ImageObject,
ToolFile,
MatLike,
np.ndarray,
ImageFile.ImageFile,
Image.Image
]]) -> MatLike:
return image.image if isinstance(image, ImageObject) else ImageObject(image).image
def Wrapper(image:Optional[Union[
str,
ImageObject,
ToolFile,
MatLike,
np.ndarray,
ImageFile.ImageFile,
Image.Image
]]) -> ImageObject:
return ImageObject(image)
class light_cv_window:
def __init__(self, name:str):
self.__my_window_name = name
cv2.namedWindow(self.__my_window_name)
def __del__(self):
self.destroy()
def show_image(self, image:Union[ImageObject, MatLike]):
if self.__my_window_name is None:
self.__my_window_name = "window"
if isinstance(image, ImageObject):
image = image.image
cv2.imshow(self.__my_window_name, image)
return self
def destroy(self):
if self.__my_window_name is not None and cv2.getWindowProperty(self.__my_window_name, cv2.WND_PROP_VISIBLE) > 0:
cv2.destroyWindow(self.__my_window_name)
return self
@property
def window_rect(self):
return cv2.getWindowImageRect(self.__my_window_name)
@window_rect.setter
def window_rect(self, rect:Tuple[float, float, float, float]):
self.set_window_rect(rect[0], rect[1], rect[2], rect[3])
def set_window_size(self, weight:int, height:int):
cv2.resizeWindow(self.__my_window_name, weight, height)
return self
def get_window_size(self) -> Tuple[float, float]:
rect = self.window_rect
return rect[2], rect[3]
def get_window_property(self, prop_id:int):
return cv2.getWindowProperty(self.__my_window_name, prop_id)
def set_window_property(self, prop_id:int, prop_value:int):
cv2.setWindowProperty(self.__my_window_name, prop_id, prop_value)
return self
def get_prop_frame_width(self):
return self.window_rect[2]
def get_prop_frame_height(self):
return self.window_rect[3]
def is_full_window(self):
return cv2.getWindowProperty(self.__my_window_name, cv2.WINDOW_FULLSCREEN) > 0
def set_full_window(self):
cv2.setWindowProperty(self.__my_window_name, cv2.WINDOW_FULLSCREEN, 1)
return self
def set_normal_window(self):
cv2.setWindowProperty(self.__my_window_name, cv2.WINDOW_FULLSCREEN, 0)
return self
def is_using_openGL(self):
return cv2.getWindowProperty(self.__my_window_name, cv2.WINDOW_OPENGL) > 0
def set_using_openGL(self):
cv2.setWindowProperty(self.__my_window_name, cv2.WINDOW_OPENGL, 1)
return self
def set_not_using_openGL(self):
cv2.setWindowProperty(self.__my_window_name, cv2.WINDOW_OPENGL, 0)
return self
def is_autosize(self):
return cv2.getWindowProperty(self.__my_window_name, cv2.WINDOW_AUTOSIZE) > 0
def set_autosize(self):
cv2.setWindowProperty(self.__my_window_name, cv2.WINDOW_AUTOSIZE, 1)
return self
def set_not_autosize(self):
cv2.setWindowProperty(self.__my_window_name, cv2.WINDOW_AUTOSIZE, 0)
return self
def set_window_rect(self, x:int, y:int, weight:int, height:int):
cv2.moveWindow(self.__my_window_name, x, y)
return self.set_window_size(weight, height)
def set_window_pos(self, x:int, y:int):
cv2.moveWindow(self.__my_window_name, x, y)
return self
def wait_key(self, wait_time:int=0):
return cv2.waitKey(wait_time)
def get_haarcascade_frontalface(name_or_default:Optional[str]=None):
if name_or_default is None:
name_or_default = "haarcascade_frontalface_default"
return cv2.CascadeClassifier(cv2data.haarcascades+'haarcascade_frontalface_default.xml')
def detect_human_face(
image: ImageObject,
detecter: cv2.CascadeClassifier,
scaleFactor: float = 1.1,
minNeighbors: int = 4,
*args, **kwargs):
'''return is Rect[]'''
return detecter.detectMultiScale(image.image, scaleFactor, minNeighbors, *args, **kwargs)
class internal_detect_faces_oop(Callable[[ImageObject], None]):
def __init__(self):
self.face_cascade = get_haarcascade_frontalface()
def __call__(self, image:ImageObject):
gray = image.convert_to_grayscale()
faces = self.face_cascade.detectMultiScale(gray, 1.3, 5)
for (x,y,w,h) in faces:
image.operator_cv(cv2.rectangle,(x,y),(x+w,y+h),(255,0,0),2)
def easy_detect_faces(camera:BasicCamera):
ImageObject(camera).show_image("window", 'q', internal_detect_faces_oop())
# 示例使用
if __name__ == "__main__":
img_obj = ImageObject("path/to/your/image.jpg")
img_obj.show_image()
img_obj.resize_image(800, 600)
img_obj.rotate_image(45)
img_obj.convert_to_grayscale()
img_obj.save_image("path/to/save/image.jpg")
# Override tool_file to tool_file_ex
class tool_file_cvex(ToolFile):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
@override
def load_as_image(self) -> ImageObject:
self.data = ImageObject(self.get_path())
return self.data
@override
def save(self, path = None):
image:ImageObject = self.data
image.save_image(path if path is not None else self.get_path())
return self

0
Convention/Image/init.py Normal file
View File

View File

@@ -5,35 +5,132 @@ import sys
import threading
import traceback
import datetime
try:
from colorama import Fore as ConsoleFrontColor, Back as ConsoleBackgroundColor, Style as ConsoleStyle
except:
print("colorama is not installed")
class ConsoleFrontColor:
RED = ""
GREEN = ""
YELLOW = ""
BLUE = ""
MAGENTA = ""
CYAN = ""
WHITE = ""
RESET = ""
class ConsoleBackgroundColor:
RED = ""
GREEN = ""
YELLOW = ""
BLUE = ""
MAGENTA = ""
CYAN = ""
WHITE = ""
RESET = ""
class ConsoleStyle:
RESET = ""
BOLD = ""
DIM = ""
UNDERLINE = ""
REVERSE = ""
HIDDEN = ""
# region ansi colorful
# Copyright Jonathan Hartley 2013. BSD 3-Clause license
'''
This module generates ANSI character codes to printing colors to terminals.
See: http://en.wikipedia.org/wiki/ANSI_escape_code
'''
CSI = '\033['
OSC = '\033]'
BEL = '\a'
def code_to_chars(code):
return CSI + str(code) + 'm'
def set_title(title):
return OSC + '2;' + title + BEL
def clear_screen(mode=2):
return CSI + str(mode) + 'J'
def clear_line(mode=2):
return CSI + str(mode) + 'K'
class AnsiCodes(object):
def __init__(self):
# the subclasses declare class attributes which are numbers.
# Upon instantiation we define instance attributes, which are the same
# as the class attributes but wrapped with the ANSI escape sequence
for name in dir(self):
if not name.startswith('_'):
value = getattr(self, name)
setattr(self, name, code_to_chars(value))
class ConsoleCursor(object):
def UP(self, n=1):
return CSI + str(n) + 'A'
def DOWN(self, n=1):
return CSI + str(n) + 'B'
def FORWARD(self, n=1):
return CSI + str(n) + 'C'
def BACK(self, n=1):
return CSI + str(n) + 'D'
def POS(self, x=1, y=1):
return CSI + str(y) + ';' + str(x) + 'H'
class ConsoleFrontColorClass(AnsiCodes):
BLACK = 30
RED = 31
GREEN = 32
YELLOW = 33
BLUE = 34
MAGENTA = 35
CYAN = 36
WHITE = 37
RESET = 39
# These are fairly well supported, but not part of the standard.
LIGHTBLACK_EX = 90
LIGHTRED_EX = 91
LIGHTGREEN_EX = 92
LIGHTYELLOW_EX = 93
LIGHTBLUE_EX = 94
LIGHTMAGENTA_EX = 95
LIGHTCYAN_EX = 96
LIGHTWHITE_EX = 97
ConsoleFrontColor = ConsoleFrontColorClass()
class ConsoleBackgroundColorClass(AnsiCodes):
BLACK = 40
RED = 41
GREEN = 42
YELLOW = 43
BLUE = 44
MAGENTA = 45
CYAN = 46
WHITE = 47
RESET = 49
# These are fairly well supported, but not part of the standard.
LIGHTBLACK_EX = 100
LIGHTRED_EX = 101
LIGHTGREEN_EX = 102
LIGHTYELLOW_EX = 103
LIGHTBLUE_EX = 104
LIGHTMAGENTA_EX = 105
LIGHTCYAN_EX = 106
LIGHTWHITE_EX = 107
ConsoleBackgroundColor = ConsoleBackgroundColorClass()
class ConsoleStyleClass(AnsiCodes):
BRIGHT = 1
DIM = 2
NORMAL = 22
RESET_ALL = 0
ConsoleStyle = ConsoleStyleClass()
def PrintColorful(color:str, *args, is_reset:bool=True, **kwargs):
with lock_guard():
if is_reset:
print(color,*args,ConsoleStyle.RESET_ALL, **kwargs)
else:
print(color,*args, **kwargs)
def PrintAsError(message:str):
PrintColorful(ConsoleFrontColor.RED, message)
def PrintAsWarning(message:str):
PrintColorful(ConsoleFrontColor.YELLOW, message)
def PrintAsInfo(message:str):
PrintColorful(ConsoleFrontColor.GREEN, message)
def PrintAsDebug(message:str):
PrintColorful(ConsoleFrontColor.BLUE, message)
def PrintAsSuccess(message:str):
PrintColorful(ConsoleFrontColor.GREEN, message)
def PrintAsLight(message:str):
PrintColorful(ConsoleFrontColor.LIGHTMAGENTA_EX, message)
# endregion
class NotImplementedError(Exception):
def __init__(self, message:Optional[str]=None) -> None:
@@ -60,13 +157,6 @@ def GetInternalDebug() -> bool:
global INTERNAL_DEBUG
return INTERNAL_DEBUG
def PrintColorful(color:str, *args, is_reset:bool=True, **kwargs):
with lock_guard():
if is_reset:
print(color,*args,ConsoleStyle.RESET_ALL, **kwargs)
else:
print(color,*args, **kwargs)
ImportingFailedSet:Set[str] = set()
def ImportingThrow(
ex: ImportError,

View File

@@ -1,3 +1,4 @@
import os.path
from .Config import *
import json
import shutil
@@ -217,7 +218,7 @@ class ToolFile(BaseModel):
with open(self.OriginFullPath, 'rb') as f:
return f.read()
def LoadAsText(self) -> str:
with open(self.OriginFullPath, 'r') as f:
with open(self.OriginFullPath, 'r', encoding='utf-8') as f:
return f.read()
def LoadAsWav(self):
try:
@@ -369,8 +370,8 @@ class ToolFile(BaseModel):
f.write(binary_data)
return self
def SaveAsText(self, text_data:str):
with open(self.OriginFullPath, 'w') as f:
f.writelines(text_data)
with open(self.OriginFullPath, 'w', encoding='utf-8') as f:
f.write(text_data)
return self
def SaveAsAudio(self, audio_data:"AudioSegment"):
'''
@@ -413,6 +414,8 @@ class ToolFile(BaseModel):
return os.path.getsize(self.OriginFullPath)
def GetExtension(self):
return GetExtensionName(self.OriginFullPath)
def GetAbsPath(self) -> str:
return os.path.abspath(self.OriginFullPath)
def GetFullPath(self) -> str:
return self.OriginFullPath
def GetFilename(self, is_without_extension = False):

View File

@@ -51,3 +51,263 @@ def word_segmentation(
return jieba.dt.cut(str(sentence), cut_all=cut_all, HMM=HMM, use_paddle=use_paddle)
except ImportError:
raise ValueError("jieba is not install")
def GetEditorDistanceAndOperations(
s1:str,
s2:str,
) -> Tuple[int, List[Tuple[Literal["add","delete"], int, int, str]]]:
"""
计算两个字符串的编辑距离和操作序列
操作格式: (操作类型, 开始位置, 结束位置, 内容)
位置基于源字符串s1
"""
m, n = len(s1), len(s2)
# 使用简单的LCS算法来找到最长公共子序列
# 然后基于LCS生成操作序列
lcs = [[0] * (n + 1) for _ in range(m + 1)]
# 构建LCS表
for i in range(1, m + 1):
for j in range(1, n + 1):
if s1[i - 1] == s2[j - 1]:
lcs[i][j] = lcs[i - 1][j - 1] + 1
else:
lcs[i][j] = max(lcs[i - 1][j], lcs[i][j - 1])
# 基于LCS生成操作序列
operations = []
i, j = m, n
while i > 0 or j > 0:
if i > 0 and j > 0 and s1[i - 1] == s2[j - 1]:
# 字符匹配,不需要操作
i -= 1
j -= 1
elif j > 0 and (i == 0 or lcs[i][j - 1] >= lcs[i - 1][j]):
# 需要插入s2[j-1]
# 找到插入位置在s1中的位置
insert_pos = i
operations.insert(0, ("add", insert_pos, insert_pos, s2[j - 1]))
j -= 1
else:
# 需要删除s1[i-1]
operations.insert(0, ("delete", i - 1, i, s1[i - 1]))
i -= 1
# 合并连续的操作
merged_operations = []
for op in operations:
if merged_operations and merged_operations[-1][0] == op[0]:
last_op = merged_operations[-1]
if op[0] == "add" and last_op[2] == op[1]:
# 合并连续的添加操作
merged_operations[-1] = (op[0], last_op[1], op[2], last_op[3] + op[3])
elif op[0] == "delete" and last_op[2] == op[1]:
# 合并连续的删除操作
merged_operations[-1] = (op[0], last_op[1], op[2], last_op[3] + op[3])
else:
merged_operations.append(op)
else:
merged_operations.append(op)
# 计算编辑距离
edit_distance = m + n - 2 * lcs[m][n]
return edit_distance, merged_operations
def _build_line_lcs(lines1: List[str], lines2: List[str]) -> List[List[int]]:
"""
构建行级LCS动态规划表
"""
m, n = len(lines1), len(lines2)
lcs = [[0] * (n + 1) for _ in range(m + 1)]
# 使用哈希加速行比较
hash1 = [hash(line) for line in lines1]
hash2 = [hash(line) for line in lines2]
for i in range(1, m + 1):
for j in range(1, n + 1):
if hash1[i-1] == hash2[j-1] and lines1[i-1] == lines2[j-1]:
lcs[i][j] = lcs[i-1][j-1] + 1
else:
lcs[i][j] = max(lcs[i-1][j], lcs[i][j-1])
return lcs
def _extract_line_operations(lines1: List[str], lines2: List[str], lcs: List[List[int]]) -> List[Tuple[str, int, int, List[str]]]:
"""
从LCS表提取行级操作序列
返回: (操作类型, 起始行号, 结束行号, 行内容列表)
"""
operations = []
m, n = len(lines1), len(lines2)
i, j = m, n
while i > 0 or j > 0:
if i > 0 and j > 0 and lines1[i-1] == lines2[j-1]:
i -= 1
j -= 1
elif j > 0 and (i == 0 or lcs[i][j-1] >= lcs[i-1][j]):
operations.insert(0, ("add", i, i, [lines2[j-1]]))
j -= 1
else:
operations.insert(0, ("delete", i-1, i, [lines1[i-1]]))
i -= 1
# 合并连续的同类行操作
merged = []
for op_type, start, end, lines in operations:
if merged and merged[-1][0] == op_type and merged[-1][2] == start:
merged[-1] = (op_type, merged[-1][1], end, merged[-1][3] + lines)
else:
merged.append((op_type, start, end, lines))
return merged
def _char_diff_in_region(s1: str, s2: str) -> List[Tuple[str, int, int, str]]:
"""
对小范围区域进行字符级LCS比较
返回相对于输入字符串的位置
"""
m, n = len(s1), len(s2)
# 快速路径
if m == 0 and n == 0:
return []
if m == 0:
return [("add", 0, 0, s2)]
if n == 0:
return [("delete", 0, m, s1)]
if s1 == s2:
return []
# 字符级LCS
lcs = [[0] * (n + 1) for _ in range(m + 1)]
for i in range(1, m + 1):
for j in range(1, n + 1):
if s1[i-1] == s2[j-1]:
lcs[i][j] = lcs[i-1][j-1] + 1
else:
lcs[i][j] = max(lcs[i-1][j], lcs[i][j-1])
# 回溯生成操作
operations = []
i, j = m, n
while i > 0 or j > 0:
if i > 0 and j > 0 and s1[i-1] == s2[j-1]:
i -= 1
j -= 1
elif j > 0 and (i == 0 or lcs[i][j-1] >= lcs[i-1][j]):
operations.insert(0, ("add", i, i, s2[j-1]))
j -= 1
else:
operations.insert(0, ("delete", i-1, i, s1[i-1]))
i -= 1
# 合并连续操作
merged = []
for op_type, start, end, content in operations:
if merged and merged[-1][0] == op_type:
last_op = merged[-1]
if op_type == "add" and last_op[2] == start:
merged[-1] = (op_type, last_op[1], end, last_op[3] + content)
elif op_type == "delete" and last_op[2] == start:
merged[-1] = (op_type, last_op[1], end, last_op[3] + content)
else:
merged.append((op_type, start, end, content))
else:
merged.append((op_type, start, end, content))
return merged
def GetDiffOperations(
s1:str,
s2:str,
) -> List[Tuple[Literal["add","delete"], int, int, str]]:
"""
计算两个字符串的差异操作序列(混合行级+字符级算法)
操作格式: (操作类型, 开始位置, 结束位置, 内容)
位置基于源字符串s1的字符偏移
"""
# 快速路径
if s1 == s2:
return []
if not s1:
return [("add", 0, 0, s2)]
if not s2:
return [("delete", 0, len(s1), s1)]
# 阶段1: 分行并建立位置映射
lines1 = s1.split('\n')
lines2 = s2.split('\n')
# 构建行号到字符位置的映射
line_offsets_s1 = [0]
for line in lines1[:-1]:
line_offsets_s1.append(line_offsets_s1[-1] + len(line) + 1) # +1 for '\n'
line_offsets_s2 = [0]
for line in lines2[:-1]:
line_offsets_s2.append(line_offsets_s2[-1] + len(line) + 1)
# 阶段2: 行级LCS分析
lcs = _build_line_lcs(lines1, lines2)
line_operations = _extract_line_operations(lines1, lines2, lcs)
# 阶段3: 转换为字符级操作
final_operations = []
for op_type, start_line, end_line, op_lines in line_operations:
if op_type == "add":
# 添加操作: 在s1的start_line位置插入
char_pos = line_offsets_s1[start_line] if start_line < len(line_offsets_s1) else len(s1)
content = '\n'.join(op_lines)
# 对于添加的行块,可以选择字符级细化或直接使用
# 这里先直接使用行级结果
final_operations.append(("add", char_pos, char_pos, content))
elif op_type == "delete":
# 删除操作: 删除s1的[start_line, end_line)行
char_start = line_offsets_s1[start_line]
if end_line < len(lines1):
char_end = line_offsets_s1[end_line]
else:
char_end = len(s1)
content = '\n'.join(op_lines)
final_operations.append(("delete", char_start, char_end, content))
# 阶段4: 对于连续的删除+添加,尝试字符级精细比较
optimized_operations = []
i = 0
while i < len(final_operations):
if (i + 1 < len(final_operations) and
final_operations[i][0] == "delete" and
final_operations[i+1][0] == "add" and
final_operations[i][2] == final_operations[i+1][1]):
# 这是一个修改操作,进行字符级细化
del_op = final_operations[i]
add_op = final_operations[i+1]
old_text = del_op[3]
new_text = add_op[3]
base_pos = del_op[1]
# 字符级比较
char_ops = _char_diff_in_region(old_text, new_text)
# 调整位置到全局坐标
for op_type, rel_start, rel_end, content in char_ops:
optimized_operations.append((op_type, base_pos + rel_start, base_pos + rel_end, content))
i += 2
else:
optimized_operations.append(final_operations[i])
i += 1
return optimized_operations

View File

@@ -1,121 +0,0 @@
[返回](./Runtime-README.md)
# /Convention/Runtime/Web
---
网络工具模块提供HTTP客户端和URL操作功能
## ToolURL类
### 构造与基本信息
- `ToolURL(string url)` 从URL字符串创建对象
- `ToString()` / `GetFullURL()` / `FullURL` 获取完整URL
- `implicit operator string` 隐式字符串转换
### URL属性解析
- `GetFilename()` 获取URL中的文件名
- `GetExtension()` 获取文件扩展名
- `ExtensionIs(params string[] extensions)` 检查扩展名是否匹配
### URL验证
- `IsValid` 属性检查URL是否有效
- `ValidateURL()` 验证URL格式
- `implicit operator bool` 隐式布尔转换等同于IsValid
支持HTTP和HTTPS协议的绝对URL
### HTTP方法
#### GET请求
- `GetAsync(Action<HttpResponseMessage> callback)` 异步GET
- `Get(Action<HttpResponseMessage> callback)` 同步GET
#### POST请求
- `PostAsync(Action<HttpResponseMessage> callback, Dictionary<string, string> formData = null)` 异步POST
- `Post(Action<HttpResponseMessage> callback, Dictionary<string, string> formData = null)` 同步POST
支持表单数据提交
### 内容加载
#### 文本加载
- `LoadAsTextAsync()` 异步加载为文本
- `LoadAsText()` 同步加载为文本
#### 二进制加载
- `LoadAsBinaryAsync()` 异步加载为字节数组
- `LoadAsBinary()` 同步加载为字节数组
#### JSON加载
- `LoadAsJson<T>()` 同步加载并反序列化JSON
- `LoadAsJsonAsync<T>()` 异步加载并反序列化JSON
### 文件保存
- `Save(string localPath = null)` 自动选择格式保存到本地
- `SaveAsText(string localPath = null)` 保存为文本文件
- `SaveAsJson(string localPath = null)` 保存为JSON文件
- `SaveAsBinary(string localPath = null)` 保存为二进制文件
### 文件类型判断
- `IsText` 是否为文本文件txt, html, htm, css, js, xml, csv
- `IsJson` 是否为JSON文件
- `IsImage` 是否为图像文件jpg, jpeg, png, gif, bmp, svg
- `IsDocument` 是否为文档文件pdf, doc, docx, xls, xlsx, ppt, pptx
### 高级操作
- `Open(string url)` 在当前对象上打开新URL
- `DownloadAsync(string localPath = null)` 异步下载文件
- `Download(string localPath = null)` 同步下载文件
## 设计特点
### 统一的HTTP客户端
使用静态 `HttpClient` 实例,避免连接池耗尽
### 自动内容类型检测
基于文件扩展名自动判断内容类型,优化保存和处理策略
### 异步支持
所有网络操作都提供异步和同步两种版本
### 错误处理
网络请求失败时回调函数接收null参数方法返回false
### 文件管理集成
下载的文件自动转换为ToolFile对象与文件系统模块无缝集成
### 灵活的数据格式
支持文本、二进制、JSON等多种数据格式的加载和保存
## 使用示例
### 基本HTTP请求
```csharp
var url = new ToolURL("https://api.example.com/data");
if (url.IsValid)
{
url.Get(response => {
if (response != null && response.IsSuccessStatusCode)
{
// 处理响应
}
});
}
```
### 文件下载
```csharp
var url = new ToolURL("https://example.com/file.json");
var localFile = url.Download("./downloads/file.json");
if (localFile.Exists())
{
var data = localFile.LoadAsJson<MyDataType>();
}
```
### 类型安全的JSON加载
```csharp
var url = new ToolURL("https://api.example.com/users.json");
var users = url.LoadAsJson<List<User>>();
```

View File

@@ -3,8 +3,7 @@ import os
from time import sleep
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from Convention.Runtime.File import *
from Convention.Runtime.Config import *
file = ToolFile("[Test]")|"temp"|None
print(file.MustExistsPath())
PrintColorful(ConsoleFrontColor.RED, "Hello, World!")